Symmetric Functions and Representations of Quantum Affine Algebras
نویسندگان
چکیده
We study connections between the ring of symmetric functions and the characters of irreducible finite-dimensional representations of quantum affine algebras. We study two families of representations of the symplectic and orthogonal Lie algebras. One is defined via combinatorial properties and is easy to calculate; the other is closely related to the q = 1 limit of the “minimal affinization” representations of quantum affine algebras. We conjecture that the two families are identical, and present supporting evidence and examples. In the special case of a highest weight that is a multiple of a fundamental weight, this reduces to a conjecture of Kirillov and Reshetikhin, recently proved by the first author.
منابع مشابه
Realization of locally extended affine Lie algebras of type $A_1$
Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...
متن کاملEmbeddings of Schur functions into types B/C/D
We consider the problem of embedding the semi-ring of Schur-positive symmetric polynomials into its analogue for the classical types B/C/D. If we preserve highest weights and add the additional Lie-theoretic parity assumption that the weights in images of Schur functions lie in a single translate of the root lattice, there are exactly two solutions. These naturally extend the Kirillov–Reshetikh...
متن کاملCrystals and Affine Hecke Algebras of Type D
The Lascoux-Leclerc-Thibon-Ariki theory asserts that the K-group of the representations of the affine Hecke algebras of type A is isomorphic to the algebra of functions on the maximal unipotent subgroup of the group associated with a Lie algebra g where g is gl ∞ or the affine Lie algebra A (1) l , and the irreducible representations correspond to the upper global bases. Recently, N. Enomoto an...
متن کاملQuantum Z-algebras and Representations of Quantum Affine Algebras
Generalizing our earlier work, we introduce the homogeneous quantum Z-algebras for all quantum affine algebras Uq(ĝ) of type one. With the new algebras we unite previously scattered realizations of quantum affine algebras in various cases. As a result we find a realization of Uq(F (1) 4 ). 0. Introduction In 1981 Lepowsky and Wilson introduced (principal) Z-algebras as a tool to construct expli...
متن کاملSymmetric Crystals and Affine Hecke Algebras of Type B
The Lascoux-Leclerc-Thibon conjecture, reformulated and solved by S. Ariki, asserts that the K-group of the representations of the affine Hecke algebras of type A is isomorphic to the algebra of functions on the maximal unipotent subgroup of the group associated with a Lie algebra g where g is gl ∞ or the affine Lie algebra A (1) l , and the irreducible representations correspond to the upper g...
متن کامل