Symmetric Functions and Representations of Quantum Affine Algebras

نویسندگان

  • Vyjayanthi Chari
  • Michael Kleber
  • MICHAEL KLEBER
چکیده

We study connections between the ring of symmetric functions and the characters of irreducible finite-dimensional representations of quantum affine algebras. We study two families of representations of the symplectic and orthogonal Lie algebras. One is defined via combinatorial properties and is easy to calculate; the other is closely related to the q = 1 limit of the “minimal affinization” representations of quantum affine algebras. We conjecture that the two families are identical, and present supporting evidence and examples. In the special case of a highest weight that is a multiple of a fundamental weight, this reduces to a conjecture of Kirillov and Reshetikhin, recently proved by the first author.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Realization of locally extended affine Lie algebras of type $A_1$

Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...

متن کامل

Embeddings of Schur functions into types B/C/D

We consider the problem of embedding the semi-ring of Schur-positive symmetric polynomials into its analogue for the classical types B/C/D. If we preserve highest weights and add the additional Lie-theoretic parity assumption that the weights in images of Schur functions lie in a single translate of the root lattice, there are exactly two solutions. These naturally extend the Kirillov–Reshetikh...

متن کامل

Crystals and Affine Hecke Algebras of Type D

The Lascoux-Leclerc-Thibon-Ariki theory asserts that the K-group of the representations of the affine Hecke algebras of type A is isomorphic to the algebra of functions on the maximal unipotent subgroup of the group associated with a Lie algebra g where g is gl ∞ or the affine Lie algebra A (1) l , and the irreducible representations correspond to the upper global bases. Recently, N. Enomoto an...

متن کامل

Quantum Z-algebras and Representations of Quantum Affine Algebras

Generalizing our earlier work, we introduce the homogeneous quantum Z-algebras for all quantum affine algebras Uq(ĝ) of type one. With the new algebras we unite previously scattered realizations of quantum affine algebras in various cases. As a result we find a realization of Uq(F (1) 4 ). 0. Introduction In 1981 Lepowsky and Wilson introduced (principal) Z-algebras as a tool to construct expli...

متن کامل

Symmetric Crystals and Affine Hecke Algebras of Type B

The Lascoux-Leclerc-Thibon conjecture, reformulated and solved by S. Ariki, asserts that the K-group of the representations of the affine Hecke algebras of type A is isomorphic to the algebra of functions on the maximal unipotent subgroup of the group associated with a Lie algebra g where g is gl ∞ or the affine Lie algebra A (1) l , and the irreducible representations correspond to the upper g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000